首页> 外文OA文献 >A microfluidic membrane device to mimic critical components of the vascular microenvironment
【2h】

A microfluidic membrane device to mimic critical components of the vascular microenvironment

机译:一种微流体膜装置,可模拟血管微环境的关键成分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vascular function, homeostasis, and pathological development are regulated by the endothelial cells that line blood vessels. Endothelial function is influenced by the integrated effects of multiple factors, including hemodynamic conditions, soluble and insoluble biochemical signals, and interactions with other cell types. Here, we present a membrane microfluidic device that recapitulates key components of the vascular microenvironment, including hemodynamic shear stress, circulating cytokines, extracellular matrix proteins, and multiple interacting cells. The utility of the device was demonstrated by measuring monocyte adhesion to and transmigration through a porcine aortic endothelial cell monolayer. Endothelial cells grown in the membrane microchannels and subjected to 20 dynes∕cm2 shear stress remained viable, attached, and confluent for several days. Consistent with the data from macroscale systems, 25 ng∕ml tumor necrosis factor (TNF)-α significantly increased RAW264.7 monocyte adhesion. Preconditioning endothelial cells for 24 h under static or 20 dynes∕cm2 shear stress conditions did not influence TNF-α-induced monocyte attachment. In contrast, simultaneous application of TNF-α and 20 dynes∕cm2 shear stress caused increased monocyte adhesion compared with endothelial cells treated with TNF-α under static conditions. THP-1 monocytic cells migrated across an activated endothelium, with increased diapedesis in response to monocyte chemoattractant protein (MCP)-1 in the lower channel of the device. This microfluidic platform can be used to study complex cell-matrix and cell-cell interactions in environments that mimic those in native and tissue engineered blood vessels, and offers the potential for parallelization and increased throughput over conventional macroscale systems.
机译:血管功能,体内稳态和病理发育受衬在血管中的内皮细胞调节。内皮功能受多种因素的综合影响,包括血液动力学状况,可溶和不可溶生化信号以及与其他细胞类型的相互作用。在这里,我们介绍了一种膜微流控设备,该设备概括了血管微环境的关键组成部分,包括血液动力切变应力,循环细胞因子,细胞外基质蛋白和多个相互作用的细胞。通过测量单核细胞对猪主动脉内皮细胞单层的粘附和迁移,证明了该设备的实用性。在膜微通道中生长并受到20达因·cm2切应力的内皮细胞在数日内保持活力,附着并汇合。与来自大型系统的数据一致,25 ng / ml肿瘤坏死因子(TNF)-α显着增加了RAW264.7单核细胞的粘附。在静态或20达因/平方厘米剪切应力条件下将内皮细胞预处理24 h不会影响TNF-α诱导的单核细胞附着。相反,与在静态条件下用TNF-α处理的内皮细胞相比,同时施加TNF-α和20达因/平方厘米的剪切应力会导致单核细胞粘附增加。 THP-1单核细胞跨激活的内皮细胞迁移,对设备下部通道中的单核细胞趋化蛋白(MCP)-1作出反应,从而增加了尿透作用。这种微流体平台可用于在模拟天然和组织工程血管中的环境中研究复杂的细胞基质和细胞之间的相互作用,并提供了与传统的宏观系统相比并行化和提高通量的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号